
Journal of Business Research 157 (2023) 113413

Available online 6 January 2023
0148-2963/© 2022 Elsevier Inc. All rights reserved.

Predicting mobility using limited data during early stages of a pandemic 

Michael T. Lash a, S. Sajeesh b,*, Ozgur M. Araz b 

a School of Business, University of Kansas, Lawrence, KS 66045, United States 
b College of Business, University of Nebraska - Lincoln, Lincoln, NE 68588, United States   

A R T I C L E  I N F O   

Keywords: 
Risk perception 
Retail activity 
Mobility 
COVID-19 
Multicollinearity 
Hill-climbing algorithm 

A B S T R A C T   

The COVID-19 pandemic has changed consumer behavior substantially. In this study, we explore the drivers of 
consumer mobility in several metropolitan areas in the United States under the perceived risks of COVID-19. We 
capture multiple dimensions of perceived risk using local and national cases and death counts of COVID-19, 
along with real-time Google Trends data for personal protective equipment (PPE). While Google Trends data 
are popular inputs in many studies, the risk of multicollinearity escalates with the addition of more relevant 
terms. Therefore, multicollinearity-alleviating methods are needed to appropriately leverage information pro-
vided by Google Trends data. We develop and utilize a novel optimization scheme to induce linear models 
containing strictly significant covariates and minimal multicollinearity. We find that there are a variety of unique 
factors that drive mobility in different geographic locations, as well as several factors that are common to all 
locations.   

1. Introduction 

Market disruptions are defined as profound changes in the business 
landscape that force organizations and supply chains to undergo sig-
nificant transformations instead of incremental changes (Edelman & 
Heller, 2014). Such disruptions may impact the interactions among 
market participants. A technology-driven market disruption, such as a 
groundbreaking invention, could be welfare-enhancing since both the 
firm that is disrupting the market and consumers could benefit at the 
expense of the firm’s competitors. In contrast, with a negative market- 
level shock, all parties could be worse off. Therefore, it becomes 
essential not only to study trends and the extent of changes in consumer 
behavior but also to predict future behavior in the presence of such 
shocks (Sheth, 2020). The global pandemic caused by the novel Coro-
navirus disease 2019 (COVID-19) provides a crucial backdrop to 
studying these phenomena.1 

It is clear that the COVID-19 pandemic has also had a significant 
impact on the economy (Donthu & Gustafsson, 2020). Restrictions such 
as travel bans, cancellation of social events (concerts, sporting events, 
etc.), closure of non-essential businesses, and “stay-at-home” orders to 

mitigate the virus’s transmission have influenced consumers’ mobility 
patterns and reduced shopper traffic and supply disruptions in many 
industries (Kumar et al., 2019). These interventions, in turn, have 
negatively impacted the profitability of brick-and-mortar stores (Pan-
tano et al., 2020). Thus, it has become vital to study the drivers of 
consumer mobility in such environments since retailers of essential and 
non-essential goods face contrasting demand shifts due to changes in 
consumer mobility (Roggeveen & Sethuraman, 2020). A better under-
standing of consumer mobility patterns can help managers optimize 
staffing, inventory, and in-store advertising (Sundararaj, 2017). 

In addition to externally imposed restrictions, consumer mobility 
could be shaped by two important aspects. First, the specific value of 
pandemic health metrics that consumers observe in their local vicinity 
relative to the broader market could affect consumer mobility. The daily 
number of cases and deaths are typically used metrics to track the 
coronavirus pandemic (Lehmann, 2020). Second, consumers’ risk 
perception of disease transmission could influence their willingness to 
adopt preventative health behaviors, such as avoiding the extent to 
which they travel. In contrast to the stated risk perception in consumer 
surveys, one could use consumers’ online search patterns of scarce 
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1 It is well known now that Coronavirus Disease 2019 (COVID-19) is caused by a virus strain, SARS-CoV-2 (CDC, 2020a). It was first detected in December 2019 in 
Wuhan, China, and shortly after, it has spread to nearly every country. By early April 2020, more than 1.5 million people had been infected with COVID-19, and it 
had caused over eighty-eight thousand deaths worldwide (Johns Hopkins, 2020). The primary mode of transmission is through respiratory droplets expelled from the 
mouth or nose of an infected person and inhaled by a healthy person (CDC, 2020b). 
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pandemic-related paraphernalia to measure intrinsic risk perception. 
Further, consumer behavior changes may vary based on the social 

and demographic characteristics of different communities and the rate 
and extent of transmission in the early stages of the pandemic. Thus, it 
may be essential to study consumer mobility patterns in distinct 
geographical areas to understand commonalities and differences in the 
underlying drivers of consumer mobility, specifically retail mobility 
(Clemons, 2008). In this paper, we study the effect of pandemic health 
metric information and consumers’ perceived risk due to the pandemic 
on consumers’ mobility decisions in three distinct geographic locations. 
We use real-time data from Google Mobility, Google Trends, and Twitter 
to develop a novel prediction algorithm for consumers’ mobility pat-
terns. While Google Trends data have been popular input in several 
studies to measure public interest, the risk of multicollinearity escalates 
with the addition of more relevant terms in such studies. Therefore, 
effective methods must be developed and implemented to maximize the 
benefit of the information from such data sources. With the developed 
novel algorithm, our methodology effectively handles multicollinearity 
and lags in covariates while ensuring that all model-included covariates 
are statistically significant. These considerations allow the results to be 
readily interpretable. Consumer mobility is defined as the aggregated, 
and anonymized movement pattern observed among consumers based 
on their mobile device location. Further, retail mobility refers specif-
ically to consumer movement trends for retail locations such as grocery 
stores, restaurants, and shopping centers. 

Based on the above discussion, we address the following research 
questions in this study:  

(1) Are the risk severity perception indicators (i.e., Google Trends 
search data) affected by risk susceptibility measure (i.e., 
pandemic health impact metric)?  

(2) How is consumer mobility affected by the two distinct dimensions 
of risk perceptions: susceptibility and severity?  

(3) Given the correlated nature of Google Trends search data, how do 
we construct a parsimonious model to predict retail mobility?  

(4) How do the risk perception dimensions differentially impact the 
various mobility activities in different metro areas? 

We make the following three main contributions. First, several 
studies (e.g., Persson et al., 2021) have focused on analyzing how con-
sumer mobility drives disease transmission and pandemic spread. In 
contrast, we focus on the reverse problem – how pandemic health 
metrics drive consumers’ risk perception and subsequently impact retail 
mobility. Second, guided by the integrated framework on how newer 
models can aid decision-making in retailing and related supply chains 
(Bradlow et al., 2017), we develop a novel steepest ascent, steepest 
descent hill-climbing algorithm that generates linear predictive models 
of consumer mobility patterns. The algorithm ensures that minimal 
multicollinearity exists among the predictors and that all predictors used 
in the model are statistically significant. These considerations allow us 
to readily interpret which defined covariates have a bearing on the retail 
phenomena of interest. Furthermore, our developed modeling frame-
work can also be adapted to study future disruptive events. Finally, our 
study broadens our understanding of the underlying drivers of consumer 
mobility during the initial phase of the COVID-19 pandemic – we find 
estimates of the relative effects of local vs global pandemic health 
metrics and consumer risk perceptions factors on consumer mobility. 
For instance, we find that in certain locations, searches for hand sani-
tizer, disinfectant, and masks are associated with decreases in retail 
mobility, but those different locations respond to different searches (e. 
g., disinfectant and hand sanitizer searches in Houston and hand sani-
tizer and mask searches in Omaha). Simultaneously, different locations 
seem to place different emphases on local vs national COVID-19 cases 
and deaths in the context of retail mobility. For instance, all locations 
responded to increases in either local cases or deaths by increasing retail 
mobility (the result is statistically significant in all cases), suggesting 

that individuals were likely to withhold their shopping tendencies when 
the pandemic was milder but were only willing to withhold such 
behavior for so long, which incidentally is when the virus had spread 
further, and COVID-19 cases and deaths had increased. Our compre-
hensive set of results can be useful to managers and policymakers in 
designing the appropriate supply chain and marketing strategies that are 
influenced by consumer mobility factors. 

2. Literature review 

We first discuss the key papers that form the building block for our 
empirical methodology. Subsequently, we review the literature on the 
applications of similar datasets and highlight our relative contributions. 

2.1. Review of methods literature 

A key aspect of this study is the introduction of predictive models 
containing minimal multicollinearity, using only statistically significant 
covariates. While we ultimately propose a model with these desired 
properties, our work builds on several studies in the extant literature we 
discuss below. 

First, a well-established measure of multicollinearity is the variance 
inflation factor (VIF) (Hair Jr et al., 2016; Sheather, 2009; Chennama-
neni et al., 2016; Weisberg, 2005). According to (Hair Jr et al., 2016), 
multicollinearity is present when the VIF of a covariate is greater than 
four. Other works have suggested that a VIF of 5 (Sheather, 2009) or 
even 10 (Weisberg, 2005) is acceptable. We will make use of this mea-
sure when developing our predictive model. Second, there are a variety 
of well-known variable selection procedures. Among these, sequential 
forward selection (SFS) (Grechanovsky & Pinsker, 1995; Lash et al., 
2017, 2019), also referred to as stepwise selection (Zhang, 2016), is 
particularly relevant to this work since we incorporate this as part of our 
proposed method. SFS works by iteratively selecting the most favorable 
covariate according to some criteria or metric (typically, predictive 
performance improvement) and retaining the selected variable in the 
model. The process is repeated until either there are no more covariates 
to select or the addition of a variable produces a worse model (according 
to the adopted criteria). As mentioned, however, these methods tend to 
focus on predictive performance (Marcano-Cedeño et al., 2010; Ver-
veridis & Kotropoulos, 2005; Cotter et al., 1999; Peduzzi et al., 1980; 
Hastie et al., 2020), rather than multicollinearity reduction or covariate 
statistical significance. SFS is a part of our methodological innovation in 
this space. 

A procedure similar to SFS is backward variable selection (BVS), 
otherwise called backward elimination. When BVS is used, a model is 
initially induced on the full set of covariates. Subsequently, according to 
some adopted goodness-measuring metrics, the least favorable covariate 
is removed. The procedure then repeats until only desirable covariates 
(according to the chosen metric) remain. However, these methods, like 
SFS, tend to focus on predictive performance improvement as their 
criteria (Nguyen et al., 2014; Meyer et al., 2010), as do the very few 
algorithms that employ both SFS and BVS (Mao, 2004; Kano & Harada, 
2000). Several select works, however, have focused on the methodology 
that sequentially selects based on p-values (Lash et al., 2017, 2019) 
rather than on definitive predictive performance-improving selection 
criteria. 

Both SFS and BVS procedures belong to a broader class of optimi-
zation methods referred to as hill-climbing or local search optimization 
methodologies. Local search methods can be used to solve a wide variety 
of problems, including binary optimization (Bertsimas et al., 2013) and 
domain-specific problems, such as examination timetabling (Caramia 
et al., 2008). Hill-climbing algorithms, specifically, have been used in a 
variety of applications as well, including wind turbine optimization 
(Karabacak et al., 2019), reservoir optimization (Alsukni et al., 2019), 
and a variety of discrete optimization problems (Vaughan et al., 2005). 
Our novel hill climbing algorithm builds on the existing literature and 
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incorporates multiple criteria, as illustrated in Table 1 below: 

2.2. Review of data and data applications literature 

From a data perspective, web search engines’ trend data have been 
used for different purposes, including surveillance or demand prediction 
of products and services (Du et al., 2015; Rivera, 2016). Laato et al. 
(2020) investigated consumers’ purchasing behavior during the early 
stages of the COVID-19 pandemic, when fear of consumer market dis-
ruptions affected multiple sectors and supply chains. More recently, 
Keane & Neal (2021) used Google Trends and search data to model 
consumer panic during the COVID-19 pandemic and highlight how local 
and national governmental pandemic policies impact consumer panic 
across countries. Simionescu & Raǐsienė (2021) also used Google Trends 
data to study unemployment trends during the COVID- 19 pandemic in 
the EU new member states. Search engine data and trend indicators have 
also been used in supply chain and operations literature. Boone et al. 
(2018) used Google Trends data to improve sales forecasts and reduce 
out-of-sample forecast errors. Fritzsch et al. (2020) also used Google 
Trends to forecast sales using weekly data at the product level. Google 
Trends information has also been used to measure consumer buzz and 
forecast movie revenues (France et al., 2021). Our analysis builds on this 
stream of research and uses google search data (as a measure of con-
sumer risk perception) to predict consumer mobility. 

In addition, Google Trends data have been widely used to inform 
epidemiological studies. Ahmad et al. (2020) presented a study to assess 
the predictability of COVID-19 incidence using Google Trends data on 
internet search interest of certain gastrointestinal symptoms and terms. 
The study stated that these internet search data could be useful for 
predicting COVID-19 cases in the United States. Similarly, Asseo et al. 
(2020) used taste and smell loss-related search terms to track the cases in 
the United States and Italy and discussed the benefits and limitations of 
using Google Trends data in disease surveillance. Internet search data 
are also useful for improving forecasts for certain infectious disease 
activities, for improving surveillance, and supporting real-time de-
cisions. In earlier studies, Google Trends data have been used in fore-
casting influenza activity and predicting related outcomes (Araz et al., 
2014; Yang et al., 2015). Kandula et al. (2019) used Google Trends data 
to forecast influenza-associated hospitalization in the United States and 
suggested that these web-search data can provide important real-time 
information and improve the accuracy of forecasts for hospitalizations. 

Prior research has also highlighted how consumers’ risk perception 
influences their use of public transportation, such as ride-sharing 

services or metro trains. (e.g., Wang et al., 2019; Basu & Ferreira, 2021; 
Garaus & Garaus, 2021). Chernozhukov et al. (2021) use Google 
Mobility data to measure the impact of the social distancing policies 
during the COVID-19 pandemic. Using geo-spatial analyses, a large 
telecommunication data set is also used to monitor human mobility 
during the COVID-19 pandemic (Persson et al., 2021). We complement 
this stream of research by using the developed predictive model to 
forecast consumer mobility in three US cities using publicly available 
data from Google that reflects “real-time” consumer trends. Such data is 
available for a majority of regions/cities across the globe, and our al-
gorithm could be used to forecast retail mobility, given the data. 

With rare events, organizations may not have relevant prior experi-
ences to draw inferences and aid decision-making. The Covid-19 
pandemic represents such a rare event. Responding to rare events re-
quires organizations to mobilize and adjust existing resources quickly as 
well as develop new capabilities (Henningsson et al., 2021). Further, 
rare events (such as the Covid-19 pandemic) are usually characterized 
by less available data (Oehmen et al., 2020). For example, in the case of 
the Covid-19 pandemic, retailers may not have accurate epidemiological 
data on transmission and may have to use other heuristics, such as 
consumer mobility patterns, to optimize retail decisions. During the 
early days of the COVID-19 pandemic, due to potential and actual social 
distancing policies, including mandated lockdowns or potential lock-
downs, consumer trends were disrupted, which also affected retail ac-
tivities globally (OECD, 2020). As the epidemic growth showed 
geographic variation, some states, e.g., New York (NY), observed early 
surges in hospitalizations and early long-term state-wide lockdowns. 
Meanwhile, other states, e.g., Nebraska (NE) and Texas (TX), observed 
increased cases and deaths sometime later than NY. These geographic 
variations in cases and deaths also produced varying demands on certain 
items, such as hand sanitizer and masks, as well as varying mobility 
patterns, including retail activity patterns. 

Our work contributes to and broadens the extant literature by 
focusing on how COVID-19 risk perceptions impact retail mobility 
(rather than on how retail mobility impacts the spread of COVID-19) 
through the development of a novel hill-climbing heuristic that pro-
duces linear models containing minimal multicollinearity and strictly 
significant covariates, and by analyzing the factors that drive consumer 
mobility during the initial phase of the COVID-19 pandemic. 

More broadly, recent technological advances are transforming 
retailing (Shankar et al., 2020), and understanding the drivers of con-
sumer mobility data can enable organizations to further optimize 
technology-driven tools to manage market disruptions. Our method is 
scalable to include more risk perception indicators to predict retail 
mobility, which could be a starting point toward developing actionable 
retailing strategies. Although we do not focus on the impact of retail 
mobility on specific retail strategies, we believe that the outcomes from 
our predictive model could be used as strategic inputs to optimize 
several retail decisions, such as staffing, inventory, and location-based 
online and in-store advertising decisions. 

3. Data and methodology 

This section presents the data and the methodology used to predict 
mobility as a function of consumers’ perceived risk. Prior research has 
identified that perceived risk plays a vital role in consumer behavior. 
Based on the stay-at-home order issued by the state and county gov-
ernments, one significant behavioral change relates to their mobility 
decisions. Therefore, due to individuals’ perceived risk, individuals may 
restrict or change their mobility for different activities. We first describe 
the risk perception dimensions and then discuss data sources that map 
onto these dimensions. 

Risk perception is broadly defined as evaluating the subjective 
probability of a negative outcome and its consequences (Sjöberg et al., 
2004; Menon et al., 2008). Prior research suggests that risk perceptions 
have two dimensions, susceptibility and severity (El-Toukhy, 2015). 

Table 1 
Comparison with past literature by type of optimization method and optimiza-
tion objective.   

Objective 

Predictive 
Performance 

P-Value VIF All 
Three 

Optimization 
Method 

SFS Zhang, 2016; 
Marcano- 
Cedeño et al., 
2010; 
Ververidis & 
Kotropoulos, 
2005; Cotter 
et al., 1999; 
Peduzzi et al., 
1980; Hastie 
et al., 2020 

Grechanovsky 
& Pinsker, 
1995; Lash 
et al., 2017; 
Lash et al., 
2019 

Dupuis 
and 
Maria- 
Pia, 
2013 

– 

BVS Nguyen et al., 
2014; Meyer 
et al., 2010 

– – – 

Both Mao, 2004; 
Kano & 
Harada, 2000 

– – Our 
method  
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Susceptibility refers to the likelihood of experiencing a health risk, 
whereas severity refers to the seriousness of the risk (Brewer et al., 
2007). 

The local and national cases and death data due to the pandemic 
publicized by the media and captured in the Pandemic Impact metrics 
provide consumers with a measure of the pandemic’s prevalence in their 
local communities, impacting their risk perceptions in terms of their 
susceptibility to the pandemic. Further, such risk assessment by con-
sumers affects their decision to search for information (Maser & 
Weiermair, 1998). Information search for pandemic-related parapher-
nalia captures the risk perception in terms of severity. Moreover, mor-
tality data may also directly affect consumers’ perceptions of the 

severity of the risk associated with the pandemic. Therefore, in our 
empirical analysis, we incorporate the effect of both these dimensions of 
risk perception on mobility. 

Since Google Trends data present timely web-search information on 
certain items in different locations, the search trends on masks, hand 
sanitizers, and disinfectants can reflect the perceived COVID-19 risk of 
individuals in these locations. These trends are impacted by reported 
local COVID-19 death and case data and nationwide COVID-19 case and 
death data shared in the national news. Further, Google Mobility data 
present real-time information about these activities in various locations. 
While the COVID-19-related epidemiological data can affect these 
mobility activities, they can also be affected by individuals’ risk 

Fig. 1. The three states and coinciding cities considered by our study with population density by county indicated with coloring. Blue indicates counties with higher 
population density and orange lower population density. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 2. A timeline showing several relevant COVID milestones, our study period, and the period in which Google Mobility established baselines from which relative 
COVID mobility is measured. * Indicates peak cases within the sample period (March 3 - May 29, 2020). 
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perceptions inferred from the Google Trends data we gathered on spe-
cific personal protection equipment(s) (PPEs). 

3.1. Data 

The COVID-19 pandemic has continuously evolved over time. As 
such, it was necessary to truncate data collection efforts and proceed 
with our analysis. Here, we explain the time frame and locations selected 
for inclusion in this study and discuss the investigated Google Trends 
search terms. 

3.1.1. Choice of locations 
One of the objectives of our study is to understand the relative impact 

of local vs global cases of COVID-19 and other perception-of-risk mea-
sures on consumer mobility in different geographic locations. Therefore, 
we decided to focus on three major cities in the US: New York City 
(NYC), Houston, and Omaha. These cities differ in terms of their popu-
lation density, socioeconomic characteristics, and the transmission dy-
namics of COVID-19 during the initial stages of the pandemic. In NYC, 
there was a surge in the number of cases and deaths due to COVID-19 
starting in March 2020, whereas the Houston area was not impacted 
until much later in the summer. Omaha is a relatively smaller city 
(although still an established metropolitan area) in the Midwest and is 
geographically separated from both NYC and Houston. All these dy-
namics and features of the metro areas allowed us to study the differ-
ential impact of local and national pandemic health metric information. 
All these metro areas are presented in Fig. 1, with population densities 
across the considered states mapped at the county level. These maps 
demonstrate that these locations are either the most populated or one of 
the most populated metro areas in their corresponding state. 

3.1.2. Time frame 
We collect data for the 12-week period from 3rd March 2020 to 29th 

May 2020 for our analysis. This time frame is chosen because the World 
Health Organization (WHO) classified the COVID-19 outbreak as a 
pandemic on 11th March 2020. This led all state and county govern-
ments to issue a stay-at-home order. Around the third week of May 2020, 
there was a shift in government policy, allowing businesses to reopen in 
a phased manner, albeit with restrictions. Furthermore, the stay-at- 
home order was modified to a “safer at home” order. 

To further clarify our study period, the temporal evolution of the 
COVID-19 pandemic, and the period in which Google Mobility baselines 
were established, we provide Fig. 2 below. 

WHO and the Center for Disease Control (CDC) assess risk and pre-
paredness for a pandemic on a continuum of four pandemic phases 
(alert, pandemic, transition, and interpandemic phases) (CDC 2016, 
WHO 2010). The time frame of our study corresponds to the alert and 
initial pandemic phases. During such a period, there is limited data 
about the accurate estimates of the virus transmissibility and severity, 
which are crucial parameters in understanding and predicting the course 
of a pandemic in epidemiology. Thus, we use available real-time data as 
proxy measures of consumers’ perceptions of risk severity and suscep-
tibility to understand drivers of consumer mobility. The outcomes from 
our predictive model could be used as strategic inputs to improve several 
retail decisions even when there is limited data about virus transmission 
and severity. 

3.1.3. Search items used in the measurement of risk 
We chose the following three search terms as a measurement of 

consumers’ risk perception: hand sanitizer, masks, and disinfectant. 
These items were chosen as they were common virus-preventative 

Fig. 3. Google Mobility data across three cities from March 3rd to May 29th, 2020.  
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measures presented to the public at the time of the study. In fact, there 
was a documented shortage of these items during the period of our 
analysis. Although we restricted our analysis to these search terms, our 
model can easily be scaled to incorporate additional google search 
terms. Further, the predictive accuracy of our parsimonious model is 
sufficiently high, as detailed in the Results section. 

3.2. Variable descriptions 

In this section, we describe the dependent and independent variables 
used in our econometric models. These models aim to determine the 
factors that significantly impact consumer mobility activities as a 
consequence of the COVID-19 pandemic. We combine four main sources 
of data: 1) Google Trends data, 2) Google Mobility data, 3) Data on 
mortality and number of infections due to COVID-19, and 4) Twitter 
data (tweets) relating to the COVID-19 pandemic. 

3.2.1. Dependent variables 
Google Mobility Data: Google mobility data is generated by 

aggregating information from users (who have agreed to share their 
location information) in conjunction with Google Maps.2 Further, the 
mobility information is grouped into six broad categories that have 
comparable features from a social distancing guidance perspective. The 

six categories are: (i) retail & recreation, (ii) grocery & pharmacy, (iii) 
parks, (iv) transit. 

stations, (v) workplaces, and (vi) residential places. These data have 
been constructed by comparing visits and lengths of stays at certain 
places relative to a baseline (Google Mobility, 2021). The retail & rec-
reation cate- gory provides data on mobility trends for places such as 
restaurants, cafes, and shopping centers. Grocery & pharmacy category 
provides data on mobility trends for sites considered to be essential trips, 
including grocery markets, drug stores, and pharmacies. Similar sub- 
categories of related locations are grouped within parks, transit sta-
tions, workplaces, and residential places (Google Mobility, 2021). The 
use of such types of consumer mobility data is also in vogue in the extant 
literature (e.g., Persson et al., 2021). 

Note that the Google mobility data compare mobility for the reported 
date to a baseline day. The baseline day represents a normal value for 
that day of the week calculated as the median value from the 5-week 
period, Jan 3 - Feb 6, 2020. Thus, consistent with our data source, we 
are interested in predicting retail mobility relative to the baseline. Fig. 3 
shows the time-series representation of the Google mobility values for 
the various categories across three cities. 

Our analysis primarily focuses on predicting retail mobility, repre-
senting more leisurely retail activities, and grocery and pharmacy 
mobility, representing retail engagements that are more out of necessity. 
Fig. 3 highlights differences in mobility types across cities – the differ-
ences arise due to differences in availability of public transportation, the 
density of retail outlets, stage of the pandemic as well as differences in 

Fig. 4. Cases and Fatalities by city from March 3rd to May 29th, 2020.  

2 More details can be found at https://www.google.com/covid19/mobility/. 
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consumer density. Among the three cities under analysis, the effect of 
the pandemic was observed to a larger extent in New York City initially. 
This substantially impacted retail mobility in NYC in the time period 
under consideration. Further, as Fig. 1 points out, the consumer density 
is much higher in New York City relative to Houston and Omaha, which 
impacts retail mobility. 

3.2.2. Independent variables 
COVID-19 Cases and Mortality: We incorporate location-specific 

COVID-19 case and death counts into our analyses, as well as counts 
for the US as a whole. Such data represent immediate indicators of 
COVID- 19 severity and are likely the factors driving Google searches for 
masks, hand sanitizer, and disinfectants. Although case fatality rates and 
the prevalence are epidemiologically better indicators of the severity 
and the transmissibility of the virus spreading in communities, at the 
time of the study, news outlets were presenting both the number of 
deaths and the confirmed cases separately, which were driving the 
public perception about the risk associated with COVID-19. Therefore, 
for each state and city considered in the study, daily cases and death 
counts are obtained from New York Times data repository and used.3 

Fig. 4 shows the COVID-19 daily cases and deaths at the three locations 
of interest as a time series. 

Google Trends: Google Trends provides a comparison of the search 
volume of different queries over time. Google assigns a popularity index 
ranging from 0 to 100 to keyword searches in which 100 represents the 
maximum search interest for the selected location and time (Google 
Trends, 2021). Fig. 5 represents the Google Trends values for our focal 
search terms in the three cities as a time-series. The data represent the 
relative search interest for that specific term in that specific geographic 

region as a proportion of all searches on all topics in Google. We build on 
the literature on the use of Google Trends data for pandemic-related 
studies (e.g., (Ahmad et al., 2020), (Asseo et al., 2020)). However, in 
contrast to extant literature that studied the effect of Google Trends on 
cases/incidence, we use the search trends data to measure consumers’ 
risk perception and analyze its impact on retail mobility. 

COVID-19 Tweets: Twitter provides a platform by which individuals 
can express their opinions to the public through small, 280-word posts 
referred to as “tweets”. Tweets that are specific to the COVID-19 
pandemic provide a means of assessing public engagement and aware-
ness related to the spread of the disease. Since retail mobility may be 
closely related to the public’s broader awareness of the pandemic, we 
propose to use COVID-19-specific tweets to measure engagement and 
awareness. Furthermore, social media-derived variables have also 
proven successful in other domains (Hu et al., 2019; Barrett & Orli-
kowski, 2021; Zhang & Ram, 2020). Our tweet dataset, which is publicly 
available (Chen et al., 2020), consists of approximately 60 million 
tweets for the period under consideration (March-May 2020). Of these 
60 million tweets, 20,000 have location-specific information, and of 
these 20,000 tweets, 1,800 are specific to Nebraska, Texas, and New 
York states. Since there are relatively few tweets specific to the states of 
the cities in our study under consideration, we elect to use these state- 
wide counts rather than further refine the geographic scope of eligible 
tweets. 

3.3. Modeling approach 

In this study, we want to quantify the impact of each variable on the 
phenomena of interest. To do so, we propose to construct ordinary least 
squares (OLS) regression models and then analyze the sign and magni-
tude of the coefficients to determine each variable’s impact on the 
phenomena under consideration. 

We construct two sets of ordinary least squares (OLS) predictive 

Fig. 5. Google Trends values by city from March 3rd to May 29th, 2020.  

3 More information can be found at https://github.com/nytimes/covi 
d-19-data. 
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models: 

A1. Models to predict each of the Google Trends variables: mask, 
hand sanitizer, and disinfectant search popularity. 
A2. Models to predict each of the Google Mobility variables: retail 
mobility and grocery and pharmacy store mobility. 

Additionally, the models we construct are location-specific. In other 
words, we construct models for Houston, New York, and Omaha inde-
pendent of one another in order to assess and compare the factors that 
drive the phenomena of interest in a location-specific manner. There-
fore, we construct and analyze five different models – three Google 
Trends models and two Google Mobility models – for each location, thus 
totaling 15 predictive models overall. 

3.3.1. Empirical models 
Based on our variables described in Section 3.2, the Google Trends 

OLS models can be expressed as: 

gt(k)t =β(k)
0 +

∑T

l=1

[
β(k)

1(t− l)
Cases(k)

(t− l) + β(k)
2(t− l)

Deaths(k)
(t− l) + β3(t− l)

USCases(t− l)

+ β4(t− l)
USDeaths(t− l)

]
,

(1)  

where the β terms are coefficients in the model and l = 1, …, T represents 
the number of days preceding the observation of each independent 
variable gt. We refer to l = 1, …, T as the lag time of each variable and 
each collection of variables var(l): l = 1, …, T as a so-called “variable 
group”. Intuitively, there is likely a high degree of correlation between 
the observed value of each variable from one day to the next (i.e., among 
the variables in a variable group). For instance, the number of US 
COVID-19 cases one day (i.e., l = 1) prior is likely highly correlated with 
the number of US COVID-19 cases two days (i.e., l = 2) prior. The 
presence of multicollinearity presents a problem if we wish to interpret 
the coefficients as an indication of the effect of the predictors on the 
predicted Google Trends variable. We will discuss and alleviate this 
issue in the next section. Note that gt ∈ {mask, hand sanitizer, disinfectant} 
and k ∈ {Houston, NYC, Omaha}. 

We also build and analyze OLS models that predict two Google 
Mobility variables: retail mobility and grocery and pharmacy mobility. 
We can express the location-specific models as: 

gm(k)
t =β(k)

0 +
∑T

l=1

[(
∑

gt∈GT
β(k)

gtl
gt(k)l

)

+

(
∑

gm′
∈GM′

β(k)
gm′

t
gm′ ,(k)

t

)

+ β(k)
1(t− l)

Cases(k)
(t− l)

+ β(k)
2(t− l)

Deaths(k)
(t− l) + β3(t− l)

USCases(t− l) + β4(t− l)
USDeaths(t− l)

+ β(k)
5(t− l)

Tweets(k)
(t− l)

]

,

(2)  

where gm ∈ {retail, grocery and pharmacy}, gm′ ∈ GM ′ = {park, transit, 
workplace, residential}, and GT = {mask, hand sanitizer, disinfectant}. 
Again, note the presence of temporal lag l = 1, …, T. 

As we have mentioned, in both the models captured by Equations (1) 
and (2), there is likely to be a high degree of multicollinearity both 
among variables in the same variable group and among variables in 
other groups (see the Appendix for location-specific correlation 
matrices). This is problematic since we wish to interpret the sign and 
magnitude of the coefficients as indicators of the effects of the predictors 
on the predicted variable of interest, as well as understand when such 
variables have the highest degree of impact. Therefore, in the next 
section, we propose a method to induce OLS models that contain mini-
mal multicollinearity and only statistically significant covariates, thus 
providing the desired interpretability. 

3.3.2. The multicollinearity problem 
To explore and illustrate the problem of multicollinearity in the 

context of our problem setting, we initially adopt a sequential forward 
selection (SFS) procedure that selects the covariate with the smallest p- 
value at each iteration for inclusion in the final model. Note that we will 
adopt this method as a sub-procedure in our proposed method in the 
next subsection and provide an algorithmic sketch in the Appendix 
section – Algorithm B.1. 

We apply SFS to our Grocery and Pharmacy Mobility prediction 
problem for each of our three selected locations and present the results 
in Table 2 below. The results of Table 2 show the benefits of SFS – the 
models are relatively sparse with strictly significant coefficients at the ρ 
≤ 0.05 level. However, the result also highlights the issue of multi-
collinearity, even when such a method is adopted. As we discussed in the 
related works section, when the VIF of a covariate is greater than four, 
multicollinearity is present (Hair Jr et al., 2016). The covariates in 
Table 2 with VIF ≥ 4.0 are highlighted in grey, and the VIF values are 
highlighted in red. As shown, a certain degree of multicollinearity is still 
present in each location-specific model. 

The problem with multicollinearity is that it affects model coefficient 
estimates, making interpretation and assessment of these coefficients 
with respect to the phenomena of interest unreliable, even flipping the 
sign of effected coefficients. We can see these effects in each of the model 
results disclosed in Table 2. Those coefficients that have a different sign 
than those uncovered by our method (disclosed in the next sub-section) 
are highlighted in blue (interested readers can compare these results to 
the results of our proposed model, found in Table 9). 

Here we can see that even though the p-values are significant, the 
signs of these coefficients are still flipped. Therefore, if we are to reliably 
interpret the coefficients of the models in our problem setting, addi-
tional innovation is needed. 

3.3.3. Sequential forward p-value Selection, Backward VIF Elimination 
As we illustrated in the previous sub-section, multicollinearity is 

Table 2 
Grocery and pharmacy mobility sequential forward selection (SFS) results ob-
tained for each of our three selected locations. The covariates with a VIF > 4 are 
highlighted with the VIF values in . The coefficients that are flipped due to 
multicollinearity, as compared to the results obtained using our method 
(Table 9), are highlighted in .  
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present in our expressed models, even when accepted procedures, such 
as SFS, are adopted. This is an issue since we wish to interpret the sign 
and magnitude of the coefficients in our models as indicators of the 
predicted outcomes. The presence of multicollinearity prevents this, 
however, oftentimes inverting the sign of collinear variables, skewing 
the magnitude of the coefficients, and producing insignificant p-values. 

Simultaneously, we also wish to determine which lagged variables 
significantly affect the outcome of interest and to keep only these vari-
ables in our models. By keeping only these lagged variables, we can not 
only comment on which of our defined variables have a bearing on the 
various outcomes of interest but also when these variables have a sig-
nificant impact on such outcomes. 

To summarize, we want our OLS models to produce three benefits: 

B1. Determine the optimal lag time between the predictors and the 
dependent variable. 
B2. Models with only statistically significant predictors (variables). 
B3. Models based on variables that have minimal multicollinearity. 

To achieve the above desirables, we begin by formulating an opti-
mization problem that transforms (B1), (B2), and (B3), above, into a 
mathematical formulation we can optimize over: 

min
X′

I⊺(y − (X′ β̂) )21
n

s.t.ρ
(

β̂j
)
≤ α∀j

VIF
(

X′

j

)
≤ γ∀j

(3)  

where β̂= (X′ ,⊤X′) -1 X′⊤y, which is the closed form solution of OLS, I is 
an identity vector, X′ ∈ Rn×p′ is a design matrix, where p′ ≤ p, with X  ∈
Rn×p being the original design matrix. In other words, X′ is a design 
matrix that contains fewer (or the same) number of features as the 
original design matrix X. The function ρ(⋅) determines the p-value of an 
inputted coefficient βj. α is the largest p-value of a particular coefficient 
allowed. The function V IF (⋅) determines the variance inflation factor 
(VIF) of each column j of a design matrix X′. γ is the largest VIF value 
allowed. Briefly put, Equation (3) optimizes over the features that are 
included in the design matrix X′ in a manner that: 

C1. Produces a model that most minimizes predictive error. 
C2. Ensures that all coefficients are statistically significant at the α 
level or better via the ρ (⋅) function. We select α = 0.05 when running 
our experiments by convention. 
C3. Ensures that all predictors have minimal multicollinearity via the 
V IF (⋅) function and corresponding cutoff γ. A VIF cutoff of 4 is the 
most conservative (i.e., smallest) VIF cutoff value we found in the 
relevant literature (Hair Jr et al., 2016), and therefore adopt this 
value in our experiments (i.e., γ = 4). 

To solve the optimization model of Equation (3), we propose a 
steepest-ascent, steepest-descent hill-climbing algorithm we refer to as 
Sequential Forward p-value Selection, Backward VIF Elimination (SFPS- 
BVE). Our SFPS-BVE algorithm is provided and discussed in Appendix B. 
In short, our SFPS-BVE algorithm consists of two sub-procedures: 
Sequential Forward p-value Selection (SFPS) and Sequential Backward 
VIF Elimination (SBVE), performed in that order. The SFPS procedure is 
designed to produce an OLS model consisting of only statistically sig-
nificant p-values, which addresses (C2) above. Our p-value criterion is in 
contrast with previous forward variable selection algorithms which tend 
to focus on predictive performance (Marcano-Cedeño et al., 2010; Ver-
veridis & Kotropoulos, 2005; Cotter et al., 1999; Peduzzi et al., 1980; 
Hastie et al., 2020). The SBVE procedure is subsequently applied to 
ensure that none of the covariates exhibit any multicollinearity, which 
addresses (C3), above. Here, it is also worth noting that backward var-
iable selection algorithms also tend to focus on predictive performance 

improvement (Nguyen et al., 2014; Meyer et al., 2010), as do the very 
few algorithms that employ both forward and backward selection, e.g., 
(Mao, 2004; Kano & Harada, 2000). 

The closed form solution to the OLS procedure ensures that the ob-
tained model most minimizes predictive error using the currently 
selected set of covariates; therefore, (C1), above, is also addressed. Thus, 
our proposed SFPS-BVE algorithm is able to address all of the above- 
enumerated desirables, enabling us to reliably interpret the sign and 
magnitude of the coefficients of the obtained OLS models as indicators of 
each variable’s effect on the predicted phenomena of interest. We pro-
vide and discuss this algorithm in Appendix B. 

3.4. Analysis and model evaluation 

In this section, we first elaborate on our proposed method of analysis, 
followed by a brief discussion of how the lagged variables are instanti-
ated in our datasets. Finally, we discuss the model evaluation. 

We conduct all of our experiments using our proposed Sequential 
Forward p-value Selection-Backward VIF Elimination method elaborated in 
Section 4 with α = 0.05 and γ = 4. In particular, we apply SFPS-BVE and 
then analyze the coefficients, p-values, and VIF values of all model- 
selected features to assess the impact of each feature on each depen-
dent phenomena of interest. 

As mentioned before, there are two categories of dependent vari-
ables: the three Google Trends variables, which include hand sanitizer, 
mask, and disinfectant searches, and the two Google Mobility variables, 
of which we will analyze retail mobility and grocery and pharmacy 
mobility. We will use the model disclosed by Equation (1) (Section 
3.3.1) to analyze the three Google Trends variables and the model dis-
closed by Equation (2) (also Section 3.3.1) to analyze the two Google 
Mobility variables. For each of the dependent variables, a model is 
constructed for each of the three locations considered in this study – 
Houston, NYC, and Omaha – for a total of 15 models. 

In order to analyze the different variables using the models proposed 
in Section 3.3, we apply a lag to all predictors (independent variables) 
used to assess a particular phenomenon of interest. Our selected lag 
duration, expressed in both models (Equations (1) and (2)) using T, is 
seven days – i.e., T = 7 – thus producing seven independent variables in 
each so-called variable group. To be more concrete, we observe a 
particular phenomenon of interest y at t – i.e., yt – and then associate 
each corresponding predictor observation at l = 1, 2, …, 7 days pre-
ceding the observation of yt to create each of our datasets. We believe a 
seven-day lag period is a reasonable length of time in which a particular 
predictor may continue having an impact on each of the dependent 
variables. 

For our Google Trends prediction models, we will apply SFPS-BVE to 
the entire dataset, consisting of 84 days, without setting aside any days 
for testing. We do this since we are predominantly interested in 
analyzing the impact of local and nationwide COVID-19 data on the 
three Google Trends variables rather than quantifying the predictive 
capacity of such variables. When analyzing Google Mobility data, 
however, we set aside the last seven days of our study period (May 23rd - 
May 29th) to also comment on the predictive capacity of our obtained 
models. We elect to use a test set for this analysis since these variables 
are the primary focus of this study, and we wish to assess the predictive 
and extrapolatory capacity of the obtained models. 

4. Results 

In this section, we present our results, beginning with Google Trends 
and followed by Google Mobility. As mentioned, our results are provided 
in terms of the coefficients, p-values, and VIF values of the variables 
selected by our method. In each of the provided coefficient results tables, 
we indicate a p-value significance of ≤ 0.001 with * * *, p-value sig-
nificance of 0.001 < ρ ≤ 0.01 with **, and p-value significance of 0.01 
< ρ ≤ 0.05 with *. Additionally, we also provide the lag (days) of each 
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selected covariate, which tells us when a particular variable has an 
impact on the corresponding phenomena of interest. 

4.1. Predicting and analyzing Google Trends data 

We first present the results of applying our method to the three 
Google Trends variables: hand sanitizer, masks, and disinfectant. 

4.1.1. Masks 
Table 3 presents the results of the mask search popularity model in 

each location. First, we can see that our method has worked as designed. 
This observation is also replicated across all models and presented re-
sults: all p-values are significant at the 0.05 level or better, and all VIF 
values are less than 4. Second, our results show a mix of factors both 
positively and negatively contributing to searches for masks. Interest-
ingly, we observe that US Cases positively contribute to mask searches in 
all three cities, whereas US Deaths negatively contribute to mask 
searches in NY and Omaha. This may be attributable to the emphasis 
placed on “Stop the Spread” campaigns implemented by organizations 
such as the CDC (Centers for Disease Control and Prevention, 2020) and 
broadcast by national news sources, e.g., CNN (CNN, 2020). News 
agencies have frequently discussed the rising number of COVID-19 cases 
and that the spread of the disease can be curbed through the imple-
mentation of social distancing measures and wearing masks. Such dis-
cussions have been prevalent in both the mainstream and research 
circles alike (Betsch et al., 2020). 

A plausible explanation of why local cases negatively impact mask 
search in Houston can be understood by noting that in the initial stages 
of the pandemic, the national media focused primarily on the US cases as 
a whole rather than local cases. Further, there were differences in local 
attitudes toward the use of masks. In addition, as we can see in Table 3, 
“Local Cases” is not as significant as “US cases” in predicting mask 
searches. Also, in the time period under consideration, the magnitude of 
cases was much higher than the deaths. This could explain why “US 
Deaths” have a negative impact on mask searches in NY and Omaha. 

A key component to these increase/decrease observations is also the 
timing (lag). In all instances, more recent (i.e., fewer lagged days) var-
iables positively influence searches for masks, while the less recent 
(more lagged days) variables negatively influence searches. This sug-
gests that individuals in all three cities are aware of the most recent 
figures surrounding the spread of COVID-19 and are responding by 
seeking out means of protecting themselves – e.g., through the use of 

masks. 

4.1.2. Hand sanitizer 
Table 4 discloses the results of predicting hand sanitizer search by 

each location that we consider. Here, we observe that there is a mix of 
variables that contribute to and detract from hand sanitizer searches and 
that the contribution of these variables is unique to each city. Interest-
ingly, the significant factors in the Houston and Omaha models all 
contribute to decreases in hand sanitizer searches. This seems a bit 
counter-intuitive since we might suppose that as local/national cases/ 
deaths increase, searches for hand sanitizer would also increase. How-
ever, in examining Fig. 3, we can see that cases do not spike until late in 
the study period in Omaha, and deaths never spike in either city, which 
may contribute to individuals acting in a seemingly counter-intuitive 
manner. In New York, nationwide increases in cases and deaths 
detract from hand sanitizer searches, while local cases positively influ-
ence searches. This finding suggests that New Yorkers are more 
responsive to local news and reporting surrounding the development of 
the COVID-19 pandemic than nationwide reporting. 

Comparing Tables 3 and 4, we observe that “US Deaths” positively 
impacts mask search, whereas it negatively impacts hand sanitizer 
search. This is not surprising given that mask and hand sanitizer search 
seems to be negatively correlated in the data - see correlation data in 
Appendix A. Further, in the early stages of the pandemic, the media 
emphasized masks much more than hand sanitizers which could have 
played a role. 

4.1.3. Disinfectant 
Table 5 discloses the disinfectant results by city. Again, a mix of 

factors contributes positively and negatively to disinfectant searches. 
Curiously, no statistically significant variables were found for the city of 
Omaha. This finding suggests that Omaha residents were not concerned 
with the purchase of disinfectants in response to the COVID-19 
pandemic during the time frame considered in this study. However, 
we did observe that Omaha residents positively responded by searching 
for masks and hand sanitizer. Thus, this result is particularly interesting. 
On the other hand, both Houston and New York models produced sta-
tistically significant coefficients. In Houston, both local cases and deaths 
decreased searches for disinfectants, while US Cases increased searches. 
This again suggests that nationwide COVID-19 reporting may have a 
positive impact on preventative measures, such as the use of disinfec-
tants. However, the New York result exhibits the opposite characteris-
tics, with local cases positively contributing to disinfectant searches and 
US Deaths negatively contributing, again suggesting that individuals 
here may be more responsive to local COVID-19 coverage and reporting. 

Collectively, Houston is most responsive to nationwide COVID-19 
cases, with US Cases positively contributing to searches for hand sani-
tizer, masks, and disinfectants. This may be due to the time period we 
consider where the spread of the virus was ramping up, but deaths were 
relatively low. On the other hand, New York is most responsive to local 
COVID-19 figures, with Local Cases positively contributing to searches 
for hand sanitizer, masks, and disinfectants. These findings suggest that 
there are regional differences in the type of information that drives 
behavior, i.e., nationwide information in the case of Houston and local 
information in the case of New York. 

Table 3 
Masks.  

City Variables Lag (days) Coefficients VIF 

Houston US Cases 1  53.324***  1.71 
Loc Cases 2  − 28.462*  1.512 
Loc Deaths 6  − 23.808***  1.272 

NY US Cases 1  37.281***  2.357 
NY Loc Cases 2  21.829**  1.811 
US Deaths 7  − 27.169***  1.703 

Omaha US Cases 1  46.212***  1.688 
US Deaths 7  − 20.267***  1.688  

Table 4 
Hand Sanitizer.  

City Variables Lag (days) Coefficients VIF 

Houston US Deaths 1  − 21.823***  1.43 
Loc Deaths 7  − 26.778***  1.43 

New York US Cases 2  − 55.503***  3.109 
Loc Cases 5  27.941***  2.447 
US Deaths 7  − 10.679*  1.685 

Omaha US Cases 4  − 42.974***  1.025 
Loc Cases 5  − 19.861**  1.025  

Table 5 
Disinfectant.  

City Variables Lag (days) Coefficients VIF 

Houston US Cases 1 25.1*** 1.698 
Loc Deaths 3 − 27.08*** 1.308 
Loc Cases 5 − 27.883** 1.472 

New York US Deaths 5 − 16.827** 1.705 
Loc Cases 5 36.481*** 1.705 

Omaha NA NA NA NA  
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Omaha, meanwhile, is a mixed bag with nationwide case-reporting 
positively contributing to searches for masks only and no information 
significantly contributing to searches for disinfectant; both local and 
nationwide information were found to negatively contribute to searches 
for hand sanitizer. This finding may suggest that individuals in Omaha 
were responsive to campaigns encouraging the use of a mask. 

4.2. Predicting and analyzing consumer mobility 

In this section, we examine the results of the Google Mobility models, 
beginning with retail mobility and followed by grocery and pharmacy 
mobility. Two results are presented with each type of mobility: predic-
tive performance results and analytical results. The predictive perfor-
mance results show the training and testing performance of each model. 
As we have mentioned, the test set consists of the last seven days of our 
data – May 23rd to May 29th (inclusive). 

4.2.1. Retail mobility 
Prior to analyzing the retail mobility models, we first report and 

discuss each model’s predictive performance, also comparing the pre-
dictive performance of our method against sequential forward selection 
(SFS). Table 6 discloses the predictive performance results for the retail 
mobility models by city, with the results reported in terms of root mean 
squared error (RMSE). 

We first note that the results of our method are comparable to that of 
SFS, with the NY model even outperforming SFS on the test set. This is 
particularly encouraging since our method is more “strict” in terms of 
the included covariates (e.g., allowing more multicollinearity may, at 
times, produce a more accurate model, but at the expense of interpret-
ability). Furthermore, the training and testing RMSE of all models are 
fairly reasonable. 

Further examining the results of the models produced using our 
model, we see that the Houston model has the lowest training and 
testing RMSE, followed by New York and then Omaha. The results 
indicate that the models are comparable in terms of predictive 
performance. 

To further assess the quality of the retail mobility models obtained 

using our method, we create plots of the predicted vs actual retail 
mobility values by date, also showing the 95 % upper and lower confi-
dence bounds on the predictions. Fig. 6 depicts these results. The results 
in Fig. 6 show that the majority of the observations (i.e., actual retail 
mobility values) are within the 95 % predictive confidence bounds, 
demonstrating that the induced models and subsequently performed 
model analysis are trustworthy. The Houston and New York models each 
have two points slightly outside the lower confidence bound, and 
Omaha has one. Each model also has several predictions (cyan line) that 
are very nearly spot on, again reinforcing the reliability of the results 
obtained from these models. 

Table 7 discloses the retail mobility model results by city. There are a 
variety of factors that were found to both increase and decrease retail 
mobility in each city. Some factors are common to all cities, such as 
residential mobility, which intuitively decreases retail mobility in all 
three locations. In other words, as individuals are forced or elect to stay 
home, they tend to also not commute to retail locations. On the other 
hand, we also observe that many factors are unique to each city, with 
some factors even influencing retail mobility in opposite ways from one 
city to the next, such as parks mobility. This finding suggests that each 
location experiences and views the COVID-19 pandemic uniquely when 
it comes to engaging in retail behavior. 

To be more concrete, we can see that residential mobility, disinfec-
tant searches, and hand sanitizer searches all contribute to decreasing 
retail mobility in the city of Houston. These findings suggest that in-
dividuals living in Houston temper their retail behavior downward 
following proactive engagement with COVID-19 preventive measures. 
The disinfectant and hand sanitizer search results suggest that as 

Table 6 
Training and testing RMSE for the Retail mobility predictive models, comparing 
our method to SFS. Testing period: May 23rd - May 29th (inclusive). Bold in-
dicates a lower RMSE as compared to the other model’s respective training/ 
testing result.   

SFS SFPS-BVIF 

City Train Test Train Test 

Houston  3.507  8.15  3.507  8.15 
NY  1.915  11.136  4.9  8.794 
Omaha  5.264  9.184  5.264  9.184  

Fig. 6. Prediction vs actual retail mobility for the testing period May 23rd - May 29th (inclusive) with 95% prediction confidence bounds. Blue dots indicate observed 
retail mobility values, the cyan line indicates retail mobility predictions, and the red line indicates upper and lower 95% prediction confidence. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 7 
Retail Mobility.  

City Variables Lag (days) Coefficients VIF 

Houston Transit Mobility 1  24.139***  3.057 
Local Cases 1  6.93*  1.48 
Residential Mobility 2  − 28.184***  2.403 
Disinfectant 3  − 8.66*  1.213 
Hand Sanitizer 4  − 20.445***  3.105 
Parks Mobility 7  13.174***  1.732 
US Deaths 7  5.104*  2.292 
Residential Mobility 1  − 7.902**  1.46 

NY Local Deaths 3  2.436*  1.049 
Parks Mobility 3  28.72***  1.86 
Workplace Mobility 7  12.009***  2.16 
Parks Mobility 1  − 9.261*  1.682 

Omaha Transit Mobility 1  27.894***  1.839 
Residential Mobility 2  − 24.568***  1.421 
Local Cases 3  13.73***  1.275 
Hand Sanitizer 4  − 12.4*  2.504 
US Cases 6  9.579*  3.278 
Mask 7  − 22.569***  1.941  
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individuals protect themselves from exposure to COVID-19 using 
chemical means, they begin to also implement social protocols by 
decreasing retail mobility. 

Simultaneously, transit mobility, local cases, parks mobility, and US 
deaths positively contribute to retail mobility in Houston. Transit and 
park mobility show that if individuals in Houston are already mobile – i. 
e., visiting parks and generally commuting – they are also inclined to go 
shopping. The positive association of retail mobility with local cases and 
US deaths shows that the rise in local and national COVID-19 numbers 
has not been detrimental to individuals’ willingness to engage in 
commerce. 

In the New York model, we observe that residential mobility is the 
sole factor leading to decreases in retail mobility. While this finding 
shows that as more New Yorkers stayed at home, a greater decrease in 
retail mobility is observed. It is also worth noting that New York 
implemented strict lockdown procedures from March 22nd to May 7th, 
with a four-phase reopening plan beginning thereafter (New York State, 
2020b; Silverstein, 2020; New York State, 2020a; Gold & Stevens, 
2020). Therefore, the lack of shopping availability is likely the biggest 
factor driving a decrease in retail mobility in the state of New York: if 
businesses simply are not open, individuals cannot engage in commerce 
in the first place. 

In New York, local deaths, park mobility, and workplace mobility 
were all found to be indicative of increased retail mobility. This suggests 
that more external engagements, such as working or going to the park, 
also lead to more retail behavior for individuals in New York. The park 
mobility finding for New York is opposite that of Omaha, suggesting that 
individuals in Omaha visit parks as an alternative to shopping. These 
orthogonal findings again suggest that retail behavior is driven and 
affected by different factors in different locations. 

In addition to park mobility, residential mobility, hand sanitizer 
searches, and mask searches also indicate lower retail mobility. Searches 
for these items as indicators of decreased retail mobility suggest that 
individuals in Omaha are also practicing social distancing as a means of 
curbing the spread of the virus after seeking out protective measures, 
such as masks and hand sanitizer, even though fewer cases and deaths 
were observed during this time period (in Omaha). 

Factors that contribute to increased retail mobility in Omaha include 
transit mobility, local cases, and US cases. While transit mobility is not 
surprising – after all, if folks are using transportation, they are likely 
using. 

such means to engage in some level of commercial activity – local 
and US cases are. Therefore, we speculate that individuals in Omaha are 
responsive to discussions of preventive measures, such as using masks 
and hand sanitizer, but are not responsive to COVID-19 case increases 
either locally or nationally. 

4.2.2. Grocery and pharmacy mobility 
We now turn to examine the grocery and pharmacy mobility models. 

Prior to analyzing these models, we first quantify their predictive ca-
pabilities as compared to SFS, the results of which are in Table 8. As with 
retail mobility, we set aside the last seven days in our study period – May 
23rd - May 29th – as a hold-out test set and assessed the models using 
RMSE. 

First, we see that the SFS models perform better than the models 
obtained using our method for NY and Omaha – our method performs 
better on the test set for Houston. We do, however, note that the models 
are all still fairly comparable. Again, this highlights the trade-off be-
tween model interpretability and, at times, predictive performance; the 
NY and Omaha SFS models are slightly more accurate but contain 
multicollinearity (as shown by Table 2) and, therefore, are not reliably 
interpretable. 

Examining the results of our models, the training and testing RMSE 
for Houston and New York are very comparable to one another and to 
their retail mobility counterparts. On the other hand, the Omaha model 
has the lowest training RMSE but substantially higher testing (out-of- 
sample) RMSE (this is also the case with the SFS-obtained model). Since 
Omaha did not implement any type of mobility inhibiting protocols, 
such as lockdowns or non-essential worker stay-at-home orders, and 
grocery and pharmacy mobility serve to meet basic needs (i.e., food and 
medicine), this type of mobility may not have been drastically affected 
by any of our defined predictors. 

To further assess the ability of our models to make out-of-sample 
predictions, we create visualizations for each, as we did with retail 
mobility, showing predicted vs actual grocery and pharmacy mobility 
values, along with 95 % prediction confidence bounds. These results are 
shown in Fig. 7. All but one grocery and pharmacy mobility value falls 
within the 95 % confidence bounds for the Houston model, and all 
values fall within the bounds for New York. All but two values fall 
outside the confidence bounds for the Omaha model, which is expected 
provided the testing (out-of-sample) RMSE. As we mentioned, Omaha 
did not implement any type of mobility inhibiting protocols, such as 
lockdowns or non-essential worker stay-at-home orders, and grocery 
and pharmacy mobility serve to meet basic needs (i.e., food and medi-
cine). Hence, this type of mobility may not have been drastically 
affected and is, therefore, harder to predict using our defined covariates. 
However, it should be noted that the training (in-sample) RMSE is very 
reasonable, so interpretation of the results for the period before May 
23rd should not be a problem for Omaha. 

Table 9 discloses the grocery and pharmacy mobility model results.4 As 

Table 8 
Training and testing RMSE for the grocery and pharmacy mobility predictive 
models, comparing our method to SFS. Testing period: May 23rd - May 29th 
(inclusive). Bold indicates a lower RMSE as compared to the other model’s 
respective training/testing result.   

SFS SFPS-BVIF 

City Train Test Train Test 

Houston  4.627  13.026  6.8  9.426 
NY  3.705  6.184  6.883  8.4 
Omaha  4.794  29.089  5.921  29.53  

Table 9 
Grocery and Pharmacy Mobility.  

City Variables Lag (days) Coefficients VIF 

Houston Hand Sanitizer 1  2.465*  2.466 
Local Cases 2  − 12.52*  1.593 
C19 Tweets 2  − 3.315*  1.14 
Residential Mobility 2  − 31.744***  1.351 
Parks Mobility 3  11.299*  1.176 
US Cases 6  5.039*  2.891 

NY Residential Mobility 1  − 0.643*  1.555 
Local Cases 1  − 6.008*  2.037 
Mask 7  − 26.973***  2.173 
Local Deaths 7  − 5.185*  1.121 
US Cases 7  14.739**  2.643 
Workplace Mobility 7  39.713***  2.389 

Omaha Local Deaths 1  13.18*  1.144 
Local Cases 3  8.384*  1.107 
Workplace Mobility 3  8.909*  1.992 
Transit Mobility 4  10.651*  2.757 
Residential Mobility 6  − 14.326**  2.47 
US Deaths 6  7.675*  1.799 
Mask 7  − 18.18**  1.695  

4 As an additional robustness check, instead of using local and U.S. cases and 
deaths as distinct, independent variables, we use the local and national death 
rates (where rate = deaths/cases) which captures the severity of the risk. We 
present the empirical estimates of this augmented model in Appendix C and 
observe that the pattern of results in the additional analysis is consistent with 
our main model estimates (Table 7 and Table 9). We thank an anonymous 
reviewer for suggesting this robustness check. 
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with retail mobility, a variety of both unique and overlapping factors 
contribute to grocery and pharmacy mobility in each city. As a general 
observation, fewer “more” significant factors were found to be indica-
tive of this type of mobility. This finding is not entirely unsurprising 
since food and medicine constitute basic needs and, pandemic or not, 
people still need these basic goods to survive. 

Nevertheless, our considered variables provide clear indications of 
grocery and pharmacy mobility drivers. In Houston, searches for hand 
sanitizer, parks mobility, and the US cases all positively contributed to 
grocery and pharmacy mobility. Searches for hand sanitizer the pre-
ceding day are unsurprising since a grocery store is where one would 
procure such items. Parks mobility also makes sense since individuals 
who are willing to be mobile are also likely willing to visit the grocery 
store, as opposed to having groceries delivered or picked up using a pick- 
up service, neighbors, etc. Curiously, increases in US COVID-19 cases 
also increase grocery and pharmacy mobility. This observation is 
tempered by the fact that, as local COVID-19 cases increase, grocery and 
pharmacy mobility decreases. It is worth pointing out that US Cases six 
days preceding increase mobility, and local cases one-day prior decrease 
grocery mobility. Therefore, taken in conjunction with one another, we 
may suppose that individuals in Houston are aware of the local figures 
surrounding COVID-19 and are responding accordingly. The simulta-
neity of US cases may actually suggest that Houstonians delayed going to 
the grocery store when cases were high a week earlier in the hopes that 
later, the spread would go down; this is an encouraging finding. 

Other factors that lead to decreases in mobility in Houston include 
COVID-19 tweets and residential mobility. The COVID-19 tweets finding 
suggests that individuals in Houston pay attention to social media and/ 
or conscientiously respond to the pandemic by expressing themselves on 
social media. Interestingly, all factors that produce decreases in grocery 
and pharmacy mobility occur during the preceding two days, suggesting 
that these effects are relatively immediate. 

In New York, only two factors were found to increase grocery and 
pharmacy mobility, both of which were observed seven days prior: US 
cases and workplace mobility. Workplace mobility is unsurprising since 
one might imagine that individuals who are already mobile for work 
might stop at the grocery on the way home, for instance. It may seem 
surprising, however, that the optimal lag is seven days prior, although 
when we consider the frequency with which individuals visit the grocery 
store – typically weekly (Yoo et al., 2006) – the finding is once again 
meaningful. 

As with Houston, increases in COVID-19 cases lead to increases in 
grocery and pharmacy mobility-seven days prior to increases in grocery 
and pharmacy mobility, while local cases one day prior lead to decreases 
in mobility, likely for the same reasons. Other factors contributing to 
decreases in grocery and pharmacy mobility in New York include resi-
dential mobility, mask searches, and local deaths, all of which make 
sense in the same contexts as previously discussed for other locations. 

In Omaha, residential mobility and mask searches contribute to 

decreases in grocery and pharmacy mobility. In contrast, local deaths, 
local cases, workplace mobility, transit mobility, and US deaths all lead 
to increases. Interestingly, local deaths and cases and US deaths all lead 
to increases in grocery and pharmacy mobility at varying times (one, 
three, and six days, respectively). As we have seen, COVID-19 was not 
widespread in Omaha until later in our study period. These findings may 
suggest that individuals were aware of this initially but continued 
“business as usual” even as the virus began spreading throughout the 
community. 

5. Managerial implications 

The pandemic has substantially impacted the retail industry, espe-
cially during the early phase when governments strictly implemented 
social distancing policies. These social distancing policies have caused 
significant challenges in global supply chains leading to widespread 
business disruptions. Therefore, developing accurate forecasts has 
become more vital than ever, especially since retailers require such 
predictions to be more robust to economic disruptions caused by public 
health or other types of disasters. For example, natural disasters can 
challenge retail inventory management strategies due to a sudden shift 
in demand for certain products in different geographies, and real-time 
forecasts can be used effectively to allocate these critical items among 
stores (Morrice et al., 2016). 

While disasters such as hurricanes can have a more predictable 
impact on demand for certain products, as presented in Morrice et al. 
(2016), businesses need to find more reliable data sources that can 
support forecasting efforts to mitigate the impact of disruptions on 
supply chains (Sharma et al., 2020). For example, Google Trends data 
can provide near-real-time information about consumer trends and 
perceived risks in different geographies, which have also been used for 
forecasting geo-spatial demand on certain products, e.g., see Nikolo-
poulos et al. (2020); Fritzsch et al. (2020); Boone et al. (2018). New data 
sources, such as Google Mobility, can also improve forecasting in the 
retail industry, as they also provide timely retail mobility data. How-
ever, there is a need to develop effective methodologies to accurately 
incorporate optimal lags in predictive variables, improving forecast 
accuracy in the retail industry. 

Over the past several decades, complex forecasting methods have 
been developed to improve sales forecasts in the retail industry. As Ma & 
Fildes (2021) have stated, retail forecasting has focused on sales fore-
casting. However, no method dominates for all types of products and 
time periods. Therefore, the performance of the predictions is hugely 
dependent on the data available, products under study, and the 
geographic trends in which the demand emerges. In addition to testing 
various techniques to find the most accurate forecasting method specific 
to the product and the business, newly emerging data sources can 
definitely provide value in studying the retail industry’s demand and 
sales phenomenon. Brea et al. (2020) underscore the significance of 

Fig. 7. Estimates vs actual grocery and pharmacy mobility for the testing period May 23rd - May 29th (inclusive) with 95% prediction confidence bounds. Blue dots 
indicate observed grocery and pharmacy mobility values, the cyan line indicates retail mobility predictions, and the red line indicates upper and lower 95% pre-
diction confidence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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these new data sources during uncertain times, especially when a 
pandemic hits. Incorporating these data (e.g., mobility and, more spe-
cifically, retail mobility data) requires a systematic approach to 
analyzing the timing of information and the optimal lags with the out-
comes of interest. As demonstrated in this study, machine learning and 
forecasting techniques used in the retail industry can address this 
challenge. 

Recent research (e.g., Sharma et al., 2020) has also urged the need to 
leverage technology and utilize more reliable data sources to improve 
forecasting efforts to mitigate the impact of disruptions on supply chains 
and business operations. Our paper highlights how aggregate-level, real- 
time data sources such as Google Trends search and mobility data could 
be employed to predict retail mobility. Our method is scalable to include 
more risk perception indicators to predict retail mobility, which could 
be a starting point toward developing actionable retailing strategies. 
Although we do not focus on the impact of retail mobility on specific 
retail strategies, we believe that the outcomes from our predictive model 
could be used as strategic inputs to improve several retail decisions, such 
as staffing, inventory, and in-store advertising decisions. 

6. Conclusions 

In this work, we examine the factors driving retail, grocery, and 
pharmacy mobility through the lens of the COVID-19 pandemic of 2020. 
We also analyze pandemic-associated online search behavior, such as 
online searches for hand sanitizer, masks, and disinfectants, and sub-
sequently utilize such factors to also examine the aforementioned 
mobility phenomenon. Our analysis was conducted on data from three 
geographically dispersed locations in the United States: Houston (TX), 
New York City (NY), and Omaha (NE). To conduct our analyses, we built 
predictive models elicited from a novel steepest ascent, steepest descent 
hill-climbing algorithm that produced models containing only statisti-
cally significant coefficients with minimal multicollinearity. Our find-
ings suggest that there are a variety of unique factors that contribute to 
and drive consumer behavior in each location, as well as several factors 
that are common to all locations. Furthermore, we find that different 
types of consumer engagements – i.e., retail vs grocery and pharmacy 

consumers – respond to different factors, which makes sense: grocery 
and pharmacy visits address basic human needs, while other types of 
retail engagements are more leisurely. 

Results suggest that retail mobility can be predicted by risk- 
indicating search terms in Houston, while transit mobility, local cases, 
parks mobility, and US deaths also positively contribute to retail 
mobility. In New York City, local deaths, park mobility, and workplace 
mobility were all found to be indicative of increased retail mobility: i.e., 
more external engagements led to more retail behavior for individuals 
during the early phase of the pandemic. In Omaha, in addition to park 
mobility, residential mobility, hand sanitizer searches, and mask 
searches were also significant predictors of retail mobility. Therefore, 
given our approach to addressing multicollinearity and lags among the 
variables, real-time prediction of retail activity can be achieved with 
some level of accuracy using the search engine trends data in conjunc-
tion with the proper terms. 

This study focused on the initial phase of the pandemic, during which 
a great deal of uncertainty regarding the severity and the trans-
missibility of the virus strain existed. In addition, there was a significant 
level of variation in local public health policies following the initial 
nationwide lockdowns. Since we focused on various factors contributing 
to the perceived risk in different locations and predicting retail mobility, 
our study can be extended with more recent data. Furthermore, the 
approach presented in this paper using the developed algorithms can be 
applied to more recently available data for understanding individuals’ 
mobility patterns during different phases of the pandemic. Lastly, the 
methodology can also be used in predicting retail mobility and other 
mobility activities, using real-time data sources, during other disruptive 
events that may shake the global economy. 
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Table A1 
Correlation matrix of Houston covariates.   

Mask Hand Disinf L C L D US C US DC19 
Tweets 

Mask  1  – – – – – – – 
Hand Sanitizer  − 0.17  1 – – – – – – 
Disinfectant  0.4  0.16 1 – – – – – 
Loc Cases  0.28  − 0.53 − 0.06 1 – – – – 
Loc Deaths  0.22  − 0.51 − 0.04 0.34 1 – – – 
US Cases  0.62  − 0.73 0.2 0.64 0.6 1 – – 
US Deaths  0.48  − 0.64 0.06 0.59 0.63 0.86 1 – 
C19 Tweets  − 0.09  − 0.26 − 0.02 0.12 − 0.1 0.09 0.1 1  

Table A2 
Correlation matrix of NY covariates.   

Mask Hand Disinf L C L D US C US DC19 Tweets 

Mask  1  – – – – – – – 
Hand Sanitizer  − 0.46  1 – – – – – – 
Disinfectant  0.33  − 0.09 1 – – – – – 
Loc Cases  0.64  − 0.47 0.25 1 – – – – 
Loc Deaths  0.14  − 0.22 0.09 0.54 1 – – – 
US Cases  0.66  − 0.83 0.32 0.66 0.29 1 – – 
US Deaths  0.46  − 0.68 0.21 0.65 0.4 0.86 1 – 
C19 Tweets  − 0.06  − 0.34 − 0.04 0.04 0.14 0.17 0.21 1  
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Appendix A 

The correlation matrices of non-lagged covariates by location are presented in Tables A1 (Houston), A2 (NY), and A3 (Omaha) below. 

Appendix B 

To discuss our SFPS-BVE algorithm, we begin by providing and discussing the SFPS component, followed by the SBVE component. We then provide 
the full SFPS-BVE algorithm. Algorithm B.1 discloses our SFPS procedure:   

Algorithm B.1 Sequential Forward p-value Selection SFPS(X, y,F )

Require:X, y,F 

1: Initialize X(0)←1,F (0)←[Const], i←0, term←False 
2: while term = False do 
3: for j←1,⋯, |F | do 
4: β(j),β(j)←OLS

(
X(i) â§ºXj, y

)

5: end for 

6: j*←argminj

{
ρ
(

β(j)
)
|ρ
(

β(j)
)
≤ α : j = 1,⋯, |F |

}

7: if j* ∕= NULL then 
8: X(i+1)←X(i+1) â§º Xj* 

9: F (i+1)←F (i) â§º F j 

10: X←X − group(j*)
11: F ←F − group(j*)
12: else 
13: term←True 
14: end if 
15: i←i + 1 
16: end while 
17:X*←X(i),F *←F (i)

Ensure:X* ,F *  

The Sequential Forward p-value Selection (SFPS) algorithm begins by initializing several variables before executing the optimization procedure (Line 
1). These variables include an initial design matrix X(0), containing only a constant for the OLS offset term, a vector F(0) for recording added feature 
names, an iteration counter i, and a Boolean variable term indicating whether the termination criteria has been satisfied. Next, the algorithm begins 
iterating until the termination criteria is satisfied (Line 2). During each iteration, OLS models are constructed on each remaining variable indepen-
dently (Xj), along with any variables that have been added (X(i)) (Lines 3–5). Therefore, during the first iteration (i = 0), there are p models initially 
constructed, where each model is constructed on a single variable and an offset term only. Note that ++ indicates concatenation. In Line 4, we store 
the full model β(j) and separately replicate and store the β coefficient value corresponding to the particular variable selected at iteration j as β(j) for 
convenience purposes. 

In Line 6, we find the index j* of the variable that produced a model with the lowest p-value such that all p-values in the model are statistically 
significant at the α level or better. If the j* returned from Line 6 is not null (i.e., the Line 6 conditions are met) (Line 7), then Lines 8–10 are executed. In 
Line 8, the Xj vector is added to X(i+1) and then deleted from X, along with the other variables belonging to the same variable group (i.e., the lagged 
variables with the same “meaning”), in Line 10. Likewise, in Line 9, the name of the selected variable Fj is added to F(i+1) and removed from F, along 
with the names of the variables belonging to the same lag group, on Line 11. 

On the other hand, if the j* returned from Line 6 is null (Line 12), then we set the term to True, and the optimization procedure terminates. Once this 
occurs, X(i) and F(i) become the optimized design matrices and feature set (Line 17) and are returned by the procedure. 

Following the application of the SFPS procedure, the Sequential Backward VIF Elimination (SBVE) procedure is applied to ensure that minimal 
multicollinearity remains among the selected covariates of the SFPS procedure. This procedure is provided by Algorithm B.2:  

Table A3 
Correlation matrix of Omaha covariates.   

Mask Hand Disinf L C L D US C US DC19 Tweets 

Mask  1  – – – – – – – 
Hand Sanitizer  − 0.33  1 – – – – – – 
Disinfectant  0.1  0.04 1 – – – – – 
Loc Cases  − 0.02  − 0.38 − 0.19 1 – – – – 
Loc Deaths  0.02  − 0.22 0.05 0.19 1 – – – 
US Cases  0.67  − 0.69 0.18 0.12 0.21 1 – – 
US Deaths  0.49  − 0.6 0.08 0.02 0.21 0.86 1 – 
C19 Tweets  − 0.07  − 0.1 0.05 − 0.02 − 0.09 0 0.03 1  
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Algorithm B.2 Sequential Backward VIF Elimination SBVE(X,F )

Require:X,F 

1: Initialize X(0)←1,F (0)←F , i←0, term←False 
2: while term = False do 
3: for j←1,⋯,

⃒
⃒F (i)⃒⃒ do 

4: VIFj←VIF
(

X(i)
j

)

5: end for 
6: j*←argminj

{
VIFj|VIFj > γ : j = 1,⋯,

⃒
⃒F (i)⃒⃒

}

7: if j* ∕= NULL then 
8: X(i+1)←X(i) − X(i)

j* 

9: F (i+1)←F (i) − F
(i)
j 

10: else 
11: term←True 
12: end if 
13: i←i + 1 
14: end while 
15:X*←X(i),F *←F (i)

Ensure:X* ,F *  

SBVE begins by initializing several variables (Line 1): X(0) is initialized to X,F(0) is initialized to F, i is an iteration counter initialized to 0, and the 
Boolean variable term indicates whether the termination criteria have been satisfied, is initialized to False. Iteration over the optimization procedure 
begins on Line 2. At each iteration, the VIF is calculated for each variable (Lines 3–5). Then, the index j* corresponding to the variable with the largest 
VIF, as long as the VIF is larger than γ, is selected (Line 6). If j* is not null (i.e., a variable with a VIF larger than γ was found) (Line 7), the jth variable 
(Line 8) and feature (Line 9) are removed. Otherwise, the algorithm’s termination criterion is satisfied, and the term is set equal to true (Line 11). Once 
the termination criterion is satisfied, the current design matrix and vector of feature names are considered optimized (Line 15) and are returned by the 

Table C1 
Retail Mobility results.  

City Variables Lag (days) Coefficients VIF 

Houston Transit Mobility 1  21.157***  3.05 
Residential Mobility 2  − 27.283***  2.34 
Disinfectant 3  − 9.454*  1.2 
Hand Sanitizer 4  − 19.964***  3.28 
Parks Mobility 7  11.177***  1.78 
US Rate 7  7.392**  2.02 

NYC Residential Mobility 1  − 7.805**  1.45 
Loc Rate 3  1.162*  1.13 
Parks Mobility 3  28.387***  1.84 
Workplace Mobility 7  12.287***  2.33 

Omaha Workplace Mobility 1  10.155**  1.55 
Residential Mobility 2  − 18.042***  1.79 
Disinfectant 3  − 10.112*  1.05 
Hand Sanitizer 6  − 13.244**  1.8 
Mask 7  − 26.808***  1.43 
US Rate 7  20.126***  1.71 
Parks Mobility 7  7.15*  1.28  

Table C2 
Grocery and Pharmacy Mobility results.  

City Variables Lag (days) Coefficients VIF 

Houston Hand Sanitizer 1  − 3.923*  2.611 
Residential Mobility 2  − 18.656***  1.663 
C19 Tweets 2  − 6.954**  1.142 
Parks Mobility 3  − 7.123*  1.91 
Workplace Mobility 6  34.376***  3.694 
US Rate 7  13.23***  1.659 

NYC Local Rate 2  − 3.708*  1.234 
C19 Tweets 3  − 6.525*  1.07 
US Rate 3  16.645***  1.637 
Residential Mobility 4  − 18.775***  1.693 
Workplace Mobility 6  34.925***  1.637 
Mask 7  − 13.345**  1.871 

Omaha US Rate 1  16.122***  1.79 
Local Rate 1  17.207***  1.124 
Workplace Mobility 3  13.367***  2.288 
Transit Mobility 4  12.99*  2.619 
Residential Mobility 6  − 9.303*  2.188 
Parks Mobility 6  7.285*  1.165 
Mask 7  − 22.631***  1.64  
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algorithm. 
After applying both the SFPS and SBVE procedures, a new OLS model is induced on the “optimized” design matrix to create the final model for 

analysis. For the sake of clarity, we provide the full SFPS-BVE procedure in Algorithm B.3: 
Application of our proposed SFPS-BVE procedure produces an OLS model consisting of statistically significant covariates with minimal multi-

collinearity, thus allowing us to reliably interpret the sign and magnitude of the coefficients as indicators of the dependent phenomena of interest.   

Algorithm B.3 Sequential Forward p-value Selection-Backward VIF Elimination SFPS − BVE(X, y,F )

Require:X, y,F 

1:X′

,F
′

←SFPS(X, y,F )

2:X*,F *←SBVE(X′

,F
′

)

3:β*←OLS(X*, y)
Ensure:X* ,F *,β*  

Appendix C 

The additional analysis results using local and national death rates for retail mobility (Table C1) and grocery and pharmacy mobility (Table C2) are 
presented below. 
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